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and then solved with 1udcmp and 1ubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is aso a factor of 2 inefficient
in time, since the complex multiplies in a complexified version of the routines would each
use 4 real multiplies, while the solution of 22N x 2N problem involves 8 times the work of
an N x N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.LA.M.).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
84.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systemsthat are band diagonal, with nonzero el ements
only along afew diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O(N') operations, and the whole solution can be encoded
very concisely. Theresulting routinetridag isonethat wewill usein later chapters.

Naturally, one does not reserve storage for the full N x N matrix, but only for
the nonzero components, stored as three vectors. The set of equationsto be solvedis

bl C1 0 U1l T1
az by ca - Us o
—| | (241
an—1 byn—1 cN—1 UN—1 TN-1
O anN bN UN TN

Noticethat ¢, and ¢ areundefined and are not referenced by theroutinethat follows.
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SUBROUTINE tridag(a,b,c,r,u,n)
INTEGER n,NMAX
REAL a(n),b(m),c(n),r(n),uln)
PARAMETER (NMAX=500)
Solves for a vector u(1:n) of length n the tridiagonal linear set given by equation (2.4.1).
a(l:n), b(1:n), c(1:n), and r(1:n) are input vectors and are not modified.
Parameter: NMAX is the maximum expected value of n.
INTEGER j
REAL bet,gam(NMAX) One vector of workspace, gam is needed.
if(b(1).eq.0.)pause ’tridag: rewrite equations’
If this happens then you should rewrite your equations as a set of order N — 1, with ug
trivially eliminated.
bet=b(1)
u(1)=r(1)/bet
dou j=2,n Decomposition and forward substitution.
gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)

if (bet.eq.0.)pause ’tridag failed’ Algorithm fails; see below.
u(j)=(r(G)-a(j)*u(j-1))/vet

enddo 11

do12 j=n-1,1,-1 Backsubstitution.
u(j)=u(j)-gam(j+1)*u(j+1)

enddo 12

return

END

There is no pivoting in tridag. It is for this reason that tridag can fail
(pause) even when the underlying matrix is nonsingular: A zero pivot can be
encountered even for a nonsingular matrix. In practice, thisis not something to lose
dleep about. The kinds of problems that lead to tridiagonal linear sets usually have
additional properties which guarantee that the algorithm in tridag will succeed.
For example, if

bjl > lal +1¢;|  j=1,...,N (2.4.2)

(called diagonal dominance) then it can be shown that the al gorithm cannot encounter
a zero pivot.

It is possible to construct special examplesin which the lack of pivoting in the
algorithm causes numerical instability. Inpractice, however, suchinstability isalmost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal agorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routines bandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systemsare slightly more general and have (say) mu > 0 nonzero elements
immediately to the |eft of (below) the diagonal and m2 > 0 nonzero elementsimmediately to
itsright (aboveit). Of course, thisisonly a useful classification if m; and m» areboth < N.
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N x N case.
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44 Chapter 2. Solution of Linear Algebraic Equations

The precise definition of a band diagona matrix with elements a;; is that
ai;j =0 when j>i+mo oOf i>j+m (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45° clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 4+ 1 + mo columns and N rows. This is best illustrated by an example:
The band diagonal matrix

3 1.0 0 0 0 O
4 1 5 0 0 00
9 2 6 5 0 0 O
0358900 (2.4.4)
007 9 3 20
00 0 3 8 4 6
00 0 0 2 4 4
whichhas N = 7, m; = 2, and mz = 1, is stored compactly asthe 7 x 4 matrix,
(2.4.5)

NWJwok 8
=00 O Ut kR
= WO o= W
8 ON O OOt

Here = denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagona
of the original matrix appears in column m; + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to itsright. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements a;; out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention isto pass N, my,
mg, and the physical dimensionsnp> N and mp > my + 1 + ma.

SUBROUTINE banmul(a,n,mi,m2,np,mp,x,b)

INTEGER ml,m2,mp,n,np

REAL a(np,mp),b(n),x(n)
Matrix multiply b = A - X, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector X and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with 7 > 1
appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:5,m1+2:m1+m2+1) with 5 < n appropriate to the number of elements on each
superdiagonal.

INTEGER i,j,k

do12 i=1,n
b(i)=0.
k=i-m1-1
do 11 j=max(1l,1-k),min(mi+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)

enddo 11

enddo 12

return

END
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2.4 Tridiagonal and Band Diagonal Systems of Equations 45

It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout's
method, see §2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme
isto return the upper triangular factor (U) in the same space that A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N x my. The
diagonal elements of U (whose product, times d = +1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of 1udcmp in §2.3:

SUBROUTINE bandec(a,n,mi,m2,np,mp,al,mpl,indx,d)
INTEGER ml,m2,mp,mpl,n,np,indx(n)
REAL d,a(np,mp),al(np,mpl),TINY
PARAMETER (TINY=1.e-20)
Given an n X n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:n,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation
of A. The upper triangular matrix replaces a, while the lower triangular matrix is returned
inal(1:n,1:m1). indx(1:n) is an output vector which records the row permutation
effected by the partial pivoting; d is output as 1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.
INTEGER i,j,k,1,mm
REAL dum
mm=m1+m2+1
if (mm.gt.mp.or.ml.gt.mpl.or.n.gt.np) pause ’bad args in bandec’
1=m1
do 13 i=1,ml Rearrange the storage a bit.
do 11 j=mi1+2-i,mm
a(i,j-1=a(i,j)
enddo 11
1=1-1
do 12 j=mm-1,mm
a(i,j)=0.
enddo 12
enddo 13
d=1.
1=m1
do 18 k=1,n For each row...
dum=a(k,1)
i=k
if(1.1t.n)1=1+1
do 1 j=k+1,1 Find the pivot element.
if (abs(a(j,1)).gt.abs(dum))then
dum=a(j,1)
i=j
endif
enddo 14
indx(k)=i
if (dum.eq.0.) a(k,1)=TINY
Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).
if (i.ne.k)then Interchange rows.
d=-d
do1s j=1,mm
dum=a(k, j)
a(k,j)=a(i,j)
a(i,j)=dum
enddo 15
endif
do 17 i=k+1,1 Do the elimination.
dum=a(i,1)/a(k,1)
al(k,i-k)=dum
do16 j=2,mm
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46 Chapter 2. Solution of Linear Algebraic Equations

a(i,j-1)=a(i,j)-dum*a(k,j)
enddo 16
a(i,mm)=0.
enddo 17
enddo 18
return
END

Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U, then the original matrix (perhaps as modified by roundoff error)
isin fact singular. In this regard, bandec is somewhat more robust than tridag above,
which can fail agorithmically even for nonsingular matrices; bandec isthus also useful (with
m1 = mg = 1) for some ill-behaved tridiagonal systems.

Oncethematrix A has been decomposed, any number of right-hand sides can be solvedin
turn by repeated callsto banbks, the backsubstitution routine whose analog in §2.3 is Lubksb.

SUBROUTINE banbks(a,n,ml,m2,np,mp,al,mpl,indx,b)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL a(np,mp),al(np,mpl),b(n)
Given the arrays a, al, and indx as returned from bandec, and given a right-hand side
vector b(1:n), solves the band diagonal linear equations A - x = b. The solution vector X
overwrites b(1:n). The other input arrays are not modified, and can be left in place for
successive calls with different right-hand sides.
INTEGER i,k,1,mm
REAL dum
mm=ml+m2+1
if (mm.gt.mp.or.ml.gt.mpl.or.n.gt.np) pause ’bad args in banbks’
1=m1
do 12 k=1,n Forward substitution, unscrambling the permuted rows as we
i=indx (k) go.
if (i.ne.k)then
dum=b (k)
b(k)=b(i)
b(i)=dum
endif
if(1.1t.n)1=1+1
do 11 i=k+1,1
b(i)=b(i)-al(k,i-k)*b(k)
enddo 11
enddo 12
1=1
do14 i=n,1,-1 Backsubstitution.
dum=b (i)
do 13 k=2,1
dum=dum-a (i,k)*b(k+i-1)
enddo 13
b(i)=dum/a(i,1)
if (1.1t.mm) 1=1+1
enddo 14
return
END

The routines bandec and banbks are based on the Handbook routines bandetl and
bansol1 in[1].

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell), p. 74.
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Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obvioudly it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not aways easy to obtain precision equa to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happensto you, thereis a neat trick to restore the full machine precision,
called iterative improvement of the solution. Thetheory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A-x=b (25.1)

You don't, however, know x. You only know some slightly wrong solution x + dX,
where §x isthe unknown error. When multiplied by thematrix A, your slightly wrong
solution givesaproduct slightly discrepant fromthe desired right-hand side b, namely

A-(X+6x)=b+0db (25.2)
Subtracting (2.5.1) from (2.5.2) gives
A-éx=4b (25.3)
But (2.5.2) can also be solved, trivially, for §b. Substituting thisinto (2.5.3) gives
A-Xx=A-(Xx+x)—b (2.5.4)

In this equation, the whole right-hand side is known, since x + 0x is the wrong
solution that you want to improve. It is essentia to calculate the right-hand side
in double precision, since there will be alot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error §x, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already havethe LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do dl this is concise and straightforward:
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